$s_{\mu\nu,\sigma}$ | $s_{\mu\nu,\alpha\alpha}=T_{\mu\nu}$ Passt auch zu $s_{\mu\nu,\nu}=0$
$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}+\Lambda g_{\mu\nu}=\frac{8\pi G}{c^4}T_{\mu\nu}$
$\delta\mathfrak{H}=\delta{g^{ik}R}_{ik}-\frac{1}{2}g^{ik}\delta\left[l,ik+l,ki-2l,s\Gamma_{ik}^s\right]$ | $-g_{\ ,i,k}^{ik}$
$\delta\mathfrak{H}=\delta{g^{ik}R}_{ik}-\frac{1}{2}g^{ik}\delta\left[l,ik+l,ki-2l,s\Gamma_{ik}^s\right]$ | $-g_{\ ,i,k}^{ik}$
$\left(g^{ik}\mathcal{U}_{ik}^q\delta_p^s-g^{qk}\mathcal{U}_{pk}^s-g^{iq}\mathcal{U}_{ip}^s\right)_{,s}$
$x_1$ | $\mathfrak{T}_{\substack{t,s \\1\ \ \ }}^s=0$ | $\mathfrak{T}_1\prime$
Call number 33-171 (the First Line containing the expression appears twice: once as originally written, with parts of the line struck out, and once ignoring the strikeouts – in addition, the First Line of the second page of the document appears):
$\frac{\partial^2T_{\mu\nu}A^{\mu\nu}}{\partial{x_4}^2}=\frac{T_{\mu\nu\require{cancel}\cancel{\sigma\tau}}A^{\mu\nu}\require{cancel}\cancel{n^\sigma}\left|n\right|}{T_{44}n^4n^4}=\frac{\mathcal{E}_{\mu\nu\sigma\tau}A^{\mu\nu}n^\sigma n^\tau}{T_{\sigma\tau}n^\sigma n^\tau}$
$\frac{\partial^2T_{\mu\nu}A^{\mu\nu}}{\partial{x_4}^2}=\frac{T_{\mu\nu\sigma\tau}A^{\mu\nu}n^\sigma\left|n\right|}{T_{44}n^4n^4}=\frac{\mathcal{E}_{\mu\nu\sigma\tau}A^{\mu\nu}n^\sigma n^\tau}{T_{\sigma\tau}n^\sigma n^\tau}$
$\require{cancel}\cancel{\delta\varphi_{,\mu}=}$ $\require{cancel}\cancel{\delta\varphi=\frac{\partial\varphi}{\partial x_\tau}\delta x_\tau}$
$\delta\varphi_{,\mu}=$ $\delta\varphi=\frac{\partial\varphi}{\partial x_\tau}\delta x_\tau$